How to construct DFA for languages consisting of strings starting with a particular substring?

1. Decide the strings for which DFA will be constructed.
2. Determine the minimum number of states required in the DFA No.of states=n+2
n : length of the string.
3. Construct a DFA for the strings decided in 2.
4. Send all the left possible combinations to the dead state. Do not send the left possible combinations over starting state.

Ex: Draw a DFA machine for the language accepting strings starting with ' 1 ' over input alphabets $\Sigma=\{0,1\}$.

Sol:

Ex: Draw a DFA machine for the language accepting strings starting with '101' over input alphabets $\Sigma=\{0,1\}$.

Sol:

Example of constructing DFA for languages consisting of specified substrings anywhere in the word:

Draw a DFA machine for the language accepting substrings 'aab' over input alphabets $\sum=\{a, b, c\}$.

Sol:

Ex: Design DFA which checks whether a given binary number is divisible by 3.

Sol:
.: binary number $\rightarrow \Sigma=\{0,1\}$.

Decimal no.	Binary no.	Remainder	States Remaider
0	0000	0	q 0
1	0001	1	q 1
2	0010	2	q 2
3	0011	0	q 0
4	0100	1	q 1
5	0101	2	q 2
6	0110	0	q 0
7	0111	1	q 1
8	1000	2	q 2
9	1001	0	q 0

Ex1: Construct a DFA, that accepts set of all strings over $\Sigma=\{a, b\}$ of length 2.
i.e $|w|=2 \rightarrow L=\{a a, a b, b a, b b\}$

Ex2: Construct a DFA, that accepts set of all strings over $\Sigma=\{a, b\}$ of length at least 2.
i.e $|w|>=2$

Ex3: Draw a DFA for the language accepting string starting with 'ab' over input alphabets $\sum=\{\mathrm{a}, \mathrm{b}\}$.

Ex4: Draw a DFA for the language accepting string ending with 'abba' over input alphabets $\sum=\{\mathrm{a}, \mathrm{b}\}$.

Ex5: Design DFA which checks whether a given binary number is divisible by 4.

